- 1. Consider the equation $v = \frac{1}{3} \cdot zxt^2$. The dimensions of variables *x*, *v* and *t* are [x] = L, $[v] = LT^1$ and [t] = T. Find the dimensions of *z* variable for making the equation self-consistent? Ans: $[z] = T^{-3}$
- **2.** An object is linearly moving with an acceleration $a(t) = a_0 t + a_1 e^{\gamma t} + a_2 sen(\omega t)$. Determine the dimensions for a_0, a_1, a_2, γ and ω . Ans.: $[a_0] = LT^{-3}$; $[a_1] = [a_2] = LT^{-2}$; $[\gamma] = [\omega] = T^{-1}$.
- 3. Given the following expressions $[a] = L/T^2$, [v] = L/T, [x] = L and [t] = T, Find the one with the wrong dimensions a) $v^2 = 2ax$, b) v = at; c) $v = \frac{x}{t} + at^2$; d) $x = \frac{v^2}{a}$ Ans.: c
- 4. Given the vectors in the figure, Find:
 - a) Their geometric addition.
 - b) The components of each vector in the given reference frame.
 - c) The components of the sum vector.
 - d) The angle between the sum vector and the largest vector.

Ans.: b) (6,0),
$$(5\sqrt{3}/2, 5/2)$$
, $(-2, 2\sqrt{3})$; c) $(4+5\frac{\sqrt{3}}{2}, \frac{5}{2}+2\sqrt{3})$; d) 35,56°

5. Given the points P (-1, 0, 2) and Q (2, -3, - 5), Find: a) the vector $\vec{r} = \overline{QP}$; b) the unit vector parallel to \vec{u}_r ; c) the angle between vector \vec{r} and each coordinate axis.

Ans: a)
$$\vec{r} = (-3, 3, 7)$$
; b) $\vec{u}_r = (-\frac{3}{\sqrt{67}}; \frac{3}{\sqrt{67}}; \frac{7}{\sqrt{67}}$ c) $\gamma_x = 111, 5^\circ$; $\gamma_y = 68, 5^\circ$; $\gamma_z = 31, 1^\circ$

6. The vector **a** in the figure has length of 10 units. Determine the coordinates of this vector: a) respect to *XY axes;* b) respect to *X'Y' axes.*

Ans: a) $a_x = 5\sqrt{3}$, $a_y = 5$; b) $a_{x'} = 7,7$; $a_{y'} = 6,4$.

7. Given the following vectors: $\vec{a} = -\vec{i} + \vec{j} + 4\vec{k}$, $\vec{b} = -3\vec{i} + \vec{j} - 7\vec{k}$ and $\vec{c} = 4\vec{i} + 7\vec{j} + 6\vec{k}$, Find:

a)
$$a+b$$
, $c-a$, $a \cdot b$, $a \times b$, $a \cdot (b \times c)$

b) The angle between a and b.

Ans: a) (-4, 2,-3); (5, 6, 2); -24; (-11,-19, 2); -165; b) 137,43°

8. Given the vector
$$\vec{a} = 5t^2 \cdot \vec{i} + t \cdot \vec{j} - t^3 \cdot \vec{k}$$
, Find $\frac{d\vec{a}}{dt}$ and $\int_1^2 \vec{a} dt$

Ans:
$$\frac{d\vec{a}}{dt} = 10t \cdot \vec{i} + \vec{j} - 3t^2 \cdot \vec{k}$$
; $\int_1^2 \vec{a} \, dt = \frac{35}{3}\vec{i} + \frac{3}{2}\vec{j} - \frac{15}{4}\vec{k}$

9. Find a unit vector on the plane OYZ and perpendicular to vector $\vec{v} = 2\vec{i} + \vec{j} - 3\vec{k}$ Ans.: $(3\vec{j} + \vec{k})/\sqrt{10}$

10. Determine and Justify if each of the following propositions is true or false:

- a) If $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$, then the vectors \vec{a} and \vec{b} are perpendicular.
- b) Given $\vec{s} = \vec{a} + \vec{b}$ and $\vec{d} = \vec{a} \vec{b}$, if \vec{s} and \vec{d} are perpendicular to each other, then $|\vec{a}| = |\vec{b}|$
- c) If the modulus of vector $\vec{u}(t)$ is constant with time, then $\vec{u}(t)$ and $\frac{d\vec{u}}{dt}$ are perpendicular to each other.
- d) If the modulus of the cross product of two vectors is equal to the value of their dot product, the angle between both vectors is 30°.

Ans.: a, b and c true, d false.

30